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El método kernel fue utilizado para estimar la funcion de densidad de
transicion de Procesos de Markov (estacionarios), en el caso gaussiano y
algunos casos no gaussianos en particular. Ademas el método bootstrap fue
utihzado para estudiar el comportamiento de las estimaciones obtenidas a
partic del método kernel mediante bandas confidenciales (puntuales)
asintoticas y bootstrap, y como un posible mejoramiento de las mismas.

La implementacion computacional se izo en SAS/IML version 6.09.
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CAPITULO I

1.- INTRODUCCION

(Skorohod, 1977) La idea de un Proceso "sin efecto posterior” ¢ la
caracteristica fundamental de un Proceso de Markov. Considérese un
sistema (o una particula) que puede encontrarse en varios estados. Los
posibles estados forman un conjunto A que se denomina espacio fase del

sistema. Asumiendo que el sistema cambia en el tiempo, el estado del

sisiema en el tiempo  es denotado por x;
Six; € By Bc A, decimos que ¢l sistema en el tiempo 7 esta situado en

el conmjunto 5.

Asumiendo que la evolucion del sistema es de naturaleza estocastica, es
decnr, el estado del sistema en el tiempo 4 en general, no esta Gnicamente
determinado por el estado del sistema en el tiempo s, donde 5 < £ sino que

gs aleatorio y esta descrito por ciertas leyes probabilisticas. Denotaremos

por P(s,x,t,B) la probabilidad del evento xy € B(s<t)/x;=x. La
funcién P(s, x, t, B) se denomina la probabilidad de transicion del sistema

dado. Un sistema es denominado "sin efecto posterior” st la probabilidad de



que estando sitnado en el tiempo £ en el conjunto B,bajo la condicion de que
el movimiento del sistema en el tiempo 5 (5<2) es completamente conocida,
es ignal a P(s,x,1B) y éste sélo depende del estado del sistema en el tiempo
5.
Denotemos por P(s,xuy,4B) la probabilidad condicional del evenio
xy & B bajo los supuestos xs=Xxy=y,(sSu<=t). De las
propiedades de la esperanza condicional se tiene que

P(s,x,t,B)= I 4 P(s,x, .y, 8, BYP(s,x,u,dy) (1.1)
Para un sistema sin efecto posterior P(s.x,1v.4 B) = P(uy, 1 B), en este caso
(1.1) nos queda,

P(s,x,t,B)={ 4 P(u,y,t, BP(s,x,u,dy) (1.2)

La ecuacién (1.2) se denomina ECUACION DE
CHAPMAN-KOLMOGQOROV. Esto puede servir como base para una
definicion de un proceso sin un efecto posterior, tales procesos se conocen

con el nombre de PROCESOS DE MARKOV. /

(Doob, 1967} Un Proceso de Markov es un proceso {X;: 7€ T} que
satisface la condicidn siguiente: para cualquier entero #z = 1, si Lsennin
son valores paramétricos, la probabilidad condicional deth conocidos los
valores de Xy ,...., Xy  esla misma probabilidad condicional de X
conocido sélo el valor de X ¢, N el sentido de que para cada «,

P, (WS /Xy, nXy 1=PX; W <o/ Xy | (1.3)
con probabilidad uno. i

(Karlin et al, 1974) Un Proceso de Markov, es un proceso que

estrictamente hablando, tiene la propiedad de que dado el valor de X}, los
valores Xg, 5 > ¢, no dependen de los valores de Xy, u < ¢, es decir, las

probabilidades de cualquer conducta futura del proceso, cuando su estado
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presente se conoce exactamente, no es alterado por el conocumiento

adicional de la conducta del proceso en el pasado.

Dada una realizacion en particular del proceso {X;:¢=1,..,N},
podemos realizar inferencias acerca del mismo, nuestro interés particular se
encuentra en la estimacion no paramétrica de la funcion de probabilidad de
tramsicion P, la cual, en general, es desconocida, ,Como vamos a estimar a
P,

La estimacion no parameétrica de densidades es un interesante topico la cual
se ha desarrollado en afios recientes, debido en parte a los modernos
computadores v al desarrollo de graficos de alta resolucion, constituye una
herramienta alterna para el anahisis de datos umvariantes y multivariantes en
grandes proporciones.

Nuestra hipotesis es que mediante el método bootstrap se puede estudiar y
mejorar el comportamiento de uno de los meétodos no paramétricos de
estimacion de densidades, en particular, el Méfodo Kernel para estimar la
funcion de densidad de transicion de un Proceso de Markov, considerando
la estructura estadistica del proceso: gaussiana o no gaussiana, tomando en
cuenta algunos estimadores ya desarrollados en la literatura, a través de

bandas confidenciales (puntuales) bootstrap.
Los objetivos principales de este trabajo son:

Generales:
Estudiar el comportamiento (via bootstrap) de la estimacion de la f.d.p. de
transicion, a través del método kemel, en el caso normal y algunos casos

no normales en particular: exponencial, beta, uniforme continua.



Especificos:

(1) Revision Bibliografica

(1) Implementacién computacional

(1il) Estudiar el comportamiento del Método Kernel para diferentes tamafios
de muesiras.

(iv) Estimar la varianza del estimador de la densidad a través del metodo
bootstrap.

(v) Establecer intervalos de confianza bootstrap (puntuales), como una
alternativa a los mtervalos confidenciales teodricos.

(vi) Realizar comparaciones, enire los intervalos confidenciales estandares

con la vananza estimada y los intervalos bootstrap, para distintos casos.



CAPITULO I

2.- ANTECEDENTES

(Masry, 1989) Sea {_X:] j & E}'i} un proceso estacionario real valorado
sobre el espacio de probabilidad (€2,4,P). Dada una realizacién en
particular {XJ J=1,.., n} del proceso, pueden realizarse inferencias
acerca del mismo. De interés particular es la estimacidén no paramétrica de la
f.d.p. de transicion.

Paran " grande " tales estimadores para procesos estacionarios combinados
pueden obtenerse claramente a partir de la estructura estadistica del proceso,
esto es, considerando su naturaleza gaussiana o no gaussiana.

Para cada eptcro m=1 v enteros O= i1 <ip <...<im. Sea
f(x, im) =f(x1 s erees XIS 1] 5 ees z‘m) la funcién de densidad de
probabilidad conjunta de las variables aleatorias Xl'l-’ . ¢ i Ia cual se

asume que existe. La funcién de densidad de probabilidad condicional de



; - 3
X7 =Xy 15 X, ) dado X;_(zﬁ,lg... Xy, )esta dadu
S (i)
por: f(x /x )
2707 fee iy

donde x; € ‘ﬂ:{p,xz eRMTPyx= (xl,x2> € M Sea ¢ una

ox)|| <o

Paracadal = 1,sea K l(x) una funcién acotada no negativa sobre R* que

funcién Borel medible sobre R Ptal que E{

satisface las condiciones sigmentes:

(i) Jogr K =15 K )= O0d) ™15, > 0.

Sea { bj iy l} una sucesién de nimeros positivos tal que bj -3 0
N

cuando 7 —» o0, y hacemos Kl,](x) [b’ JKK— :

En base a una reahzaciéon particular {X ci=1,, n}se estima
‘E‘(x, im),mz1, por

A , ~157- Iw .
s i) = (o= i L K, Je-x) e
donde, )( L iy o X in) Y naturalmente se asume que # > i3.

El estimador (2.1) es claramente recursivo va que

. 1, ) % . - (o )
fn(x, Zyn) = (nn_z_ ! )fn_l (X, Zm) =+ (nm Zrn) 1 Kn—-z'm kx m)inmim,) .

La f.d.p. condicional | x 2/ Xy ) se estima mediante la expresion siguiente,

fn(XZ ;xl) i E;,Ip)

y cada uno de los estimadores antes mencionados tienen convergencia casi

(2.2)

segura a su verdadero valor. /i

{Roussas, 1969} En un proceso de Markov fundamental, éste define un
espacio de probabihdad (€2,4,F) vy toma valores en la recta real, es
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(estictamente} estacionario y tiene las densidades imicial, conjunia

bivariante y de transicion, p(-), ¢(-, -), #(-/x), x € R, respectivamente.
Sea K una f.d.p., con las primeras n+1 variables X;’-, J=1,...,n+1 del

proceso, se definen las variable aleatorias
pux),x € R, gu(y), y € R2 por las re?acione\s siguientes:
= miy-lzn K(EA) (03
Pt = T KT 23)

. I x—)(:. (x’_X'.+
gn(y) = gulx,x )= (nh) 12,]11 K[ f,}_ }KL = ’] (2.4)
.y £l i y

donde 2 = A(n) es una sucesion de constantes positivas que satisfacen

ciertas condiciones adicionales. Se tiene ademas el conjunto

tn(x/x) = -‘-’ﬁ;—};l (2.5)

A partir de pp(x) ¥ ¢n(3) se definen las variables aleatorias,
Fu(x)=[* oo Pnl2)dz, Gn(z/x) = [z oo tn{dx>ix)

Finalmente sean F(-) y G(-/x) las funciones de distribucién inicial y de
transicion del proceso. Bajo condiciones apropiadas de la funcion K, Ia
sucesion {hn)}. y el proceso, los resultados son los sigunientes:

(1) La funcién de distribucién, Fpu(-), como un estimador de F(x) cumple
con el Teorema de Glivenko-Cantelli.

(1) El estimador G »(-#x) de G{}x), cumple con el resultado siguiente:
SUP{|Gn(z/x) — G(z/x)|, z € R}

converge en probabilidad a cero, cuando # —» ©, Vx € . H



(oo
(Yakowit;, 1985) Dada una sucesion (estacionaria) de Markov iXJJL la

cual presumimos que es G, y que tiene f.d.p. contirma (estacionaria) % (x)
y f.d.p. de transiciéon £ (3/X). Se hace la siguiente proposicién para la
estimacion de £ (y/x).

Proposicion:Para las variables aleatorias X;, la sucesion {a(n)}, una
sucesion de numeros positivos, y una f.d.p. d-variante K(-), la expresion
sigwiente es mejor conocida como un estimador no paramétrico para la
densidad comin de las X’is,
: -1.n x—X,
Pn(x) =] atmy® | 3] K(’ 4) 26

El fundamento de los métodos para hacer inferencias y regresion acerca de

la f.d.p. de transicion en esta seccion y en las siguiente estan motivados por
¢l descubrimiento de Rosenblait (1970) de que bajo el supuesto GQ, la
propiedad de normalidad asintética de Px(x) incluso para sucesiones de
Markov se cumple. Especificamente, asumimos que los X"i.s son vectores

con d coordenadas, que K(-)es una fd.p. dvariante que es uniformemente

continua la cual satisface
K(u) = O([ul_l ) cuando |u| — «© (2.7)
j'u-K(ul, ..... ,ud)dul ...... duy=0, 157<d(2.8)

Con estos supuestos se tienen los resultados fundamentales siguientes,

Lemma Sea K(-)una fdp. d-vanante, y sea {X»} una sucesion de
Markov d-variante con fd.p. mmcial v de transicion (estacionarias)
7w(x) y f (3/x) respectivamente, las cuales son acotadas y continnamente
diferenciables. Supdngase ademas que todos los momentos de segundo

orden = f u i 7-K(u)du son finitos vy que P (x) se calcula de acuerdo

con (2.6), con n[a(n)d] ~—» oo , pero que a(n) — 0,



(1) El sesgo
EIP ()] n(x) = L 3‘[ L _rix) la(n)? + o[a(n)?] (2.9)

_ 2 31 dx,dx,
(2)S1 K(x --XJ',-) tiene momento fimto de orden cuatro, entonces
L .
[na(n)d:lz P (zi) ——E[Pn (zi) Jl NID(O G* ) (2.10)
i
=12, los ZZS son distintos y
01,2 = n(zl-)j'KZ(u)du, i=1,..,m(2.11)

. X, o ‘
Sif(yix) =f 7(t (x));) es la fd.p. estacionaria para (X X +1) entonces ,

-

un estimador logico para la densidad de transicion es, por lo tanto,

nlo) = 52 2.12)

donde

o[ oo2d, 1 en=1  f G=Xay=Xa) | o s
Pn(\xﬁy)—u[am) ] Z 1}1[—————-—-————61(\}1) J(Z.L )

y h(z) es una f.d.p. bivariante.

Teorema 2.1 Sean K(u)y A(z) fdp'sen R d y EHZd, respectivamente, las
cuales satisfacen (2.7) y (2.8) y supongase que {Xpu} es una sucesion

{estacionaria) de Markov d-variante con f.d.p.'s dos veces diferenciable
n(x) y f (x,y) para {X i} y {( (is X +1) }respectivamente. Supbngase

ademas que na(n)Zd — 0, K(x "‘Xi) y h(x X Py ‘XH-I ) tienen
)2d+4 -0

momentos de cuarto orden, y na(n
Entonces para f(3/x) determinado por (2.12), se tiene que

Ja(m) 2% [ tn(yix)~f (%) | (2.14)
es asintoticamente distribuido normalmente con media cero y varianza ignal
W (z)dz
a V=Y I

2.15 n
[()J @19 :



{Hernindez-Lerma ef al, 1988) Sea {X;:1=0,1,....} un proceso de

markov R%.valorado con densidad de transicién g(v|x), una distribucién
inicial arbitraria Bo. De donde, para todo £ = 1,2,..., la distribucion de
u s de Xy esta dada recursivamente por

neB) = QB 1 (dx), Be B? (2.16)
donde f es el sigma-algebra de Borel en SR d, QO(Blx) denota la funcidn de

probabilidad de transicidn, es decir,
O(B/x) =IB q(y/x)dy, x € R4 y Be Bd.
Supuestos:

(i) Existe un namero positivo o < 1 tal que,

loC) = Ol < 20, ¥,y € BE
es decir, independientemente de la distribucién inicial (o, el proceso de
markov tiene distribucion invariante |1, esto es,

WB) = [ QBIu(dx), VB € B,
Para poder estimar |1, asumimos lo siguente:
(a) La distnibucién imicial (o es absolutamente continuna con densidad
acotada ©o.

{(b) Existe una constante g y una funcidon g € B(md) - espacio de

Banach - y  [q(vx) - q0r/m)] < g0y -] ¥ x, 3. € R, De
donde, plo es absolutamente continua con densidad Dy, dada

recursivamente por

O;= IB g(y/x)D ;1 (x)dx, para casitodo y € i}?d, t=1

como [ es absolutamente continua, existe una funcién medible no negativa
D tal que W(B) = [ O(x)dx para B € Bd.

Asi, D(y) = f g(y/x)D(x)dx, para casitodo y € R d.

10



(1) Estimacion de la Densidad Invariante
Para n = 012. . Sea Up la funcién definida por
U b

n(x) = n b

mencionada como funcion kemel, y {by} es una sucesion de ntimeros
positivos. El estimador recursivo Wolverton-Wagner (WW) @, de la

) x€ fHddonde U es una fdp., algunas veces

densidad es entonces definido como

(fiz(x)— "“]Tt 1 Un(\’:n X),Xx € ERd v t=1,2,..... (2.17)
y por otra parte L z-(B) j t(}x)dx, se define como un estimador para la

funciéon de probabilidad invanante pi. Asumiendo que el kemel U esta
acotado, [[UJ] < o0y también que p = | |x|IXx)dx < co.

Con respecto a la sucesion {b;}, asumimos que es no creciente, y que

satisface alguna de las condiciones sigunientes:
Condicion |
(a) b t 0
(b) Ibf —» o0
3 —d
(c)Lgt 2b, " <
Para establecer nuestro primer resultado consistente, definimos la funcion
sesgo, By(x) = E[(i') t(x)] - @(x) y el error cuadritico medio,
M{£x) = E[@(x) (I‘)(x)] V[CD I(r)-| + By(x) 2
Teorema 2.2 Supdngase que la condicién 1(a) se cumple, entonces para
t => 00, se tiene que
(a) SUPx|By(x)| = 0
Ademas si la condicion 1(b) se cumple, entonces

(b) SUPxVar[(D r(x):l <et” lbt ~> 0, donde ¢ =

(¢) SUPxM £x) — 0
Supodngase también que la condicién 1{¢) se cumple, entonces,

(1 a)’

11



(d) D (x) > O(x), casi seguramente, Vx € Ry
) “M i “‘“ = j Icf)z(x) — O(x) ‘ dx casi seguramente.

(1) Estimacion de la Densidad Conjunta

Sea Z;= (XI>X1+1 ), t=0,1,..., el cual es un proceso de markov

bidimensional, y {Z;} tiene densidad i'(x, y)= q(y/x)ff) (), 120, Ia
cual converge en norma Ly a f(x,3) = g(y/x)D(x).

Para definir un estimador fy(x,y) de la densidad conmjunta f(x,y),
consideremos de nuevo la sucesién {by} vy las funciones [{x) y Uplx)

miroducidas en la seccion anterior, y sea

Unce) = UnUn0) = 5200 £ )0 ), Ve € 924
luego ' '
for,y) = 1250 Un(sn—xx,1 —y) 218)
Para establecer el correspondiente resultado consistente, introducimos la
funcion sesgo, B :‘(x, y)= E[/f (X, y):J ~f(x,y) y la funcién error
cuadratico medio
M) = [ 1) -rep)” = e |- Bl ey)
Considerando las condiciones 1(b-c) y,
Condicion 2
(a) tb %d -3 00
(b) 2t t‘%b;Zd < o0

Teorema 2.3 Supdngase que la condicion 1(a) se tiene, esto es, by —» O
cuando ¢ — 0, se cumple que:
(a) SUPx,y | By (v, )| =0
si en adicion, la condicion 2(a) se cample, entonces:
12



(b) SUPx, y{ V[f’ £, }/)] } < ctbt_Zd, para alguna constante ¢, y
(©) SUPx,yMy (x,y) —> 0.

Supongase también que la condicién 2(b) se cumple. Entonces,

(d) { 1, ¥) = f (x, y) casi seguramente, V(x,y) € 9%“‘1, y

(e) fj lft(x W —=fx,y) l dxdy - C casl seguramente.

(i11) Estimacién de la Densidad de Transicion

Teniendo dos estimadores @ £y f (xy) de OX)yf(x,y),
respectivamente, ahora podemos definir un estimador q(3/x) para la

L&)

densidad de transicion ¢(y/x) = Yy en una forma obwia:

q:(v/x) = 1099 v, vy e R 121219
@(x)

Teorema 2.4 Sea x € ind tal que ©(x) > 0. Si los supuestos de los
teoremas 2.2(d) y 2.3(c) se cumplen, entonces, cuando # —» o0, se tiene

que

(a) SUPyE[4(y/x) = q(v/x)]> = 0

S1 también la condicion 2(b) se cumple, entonces,

(b) q4(3/x) — g(y/x) casi seguramente Vy € E}'id, y
@ |0 - 0| =
de donde,

QuB/x) = [ d,(vix)dy, Be B¥ (2.20)
es un estimador de la funcion de probabilidad de transicion O(B/x).  //

13



CAPITULO I

3- METODOLOGIA ESTADISTICA
3.1.- METODO BOOTSTRAP

3.1.1.- Introducciéon

Un problema tipico en Estadistica generalmente involucra la estimacién de
un pardmetro desconocido . Las principales preguntas a responder
mcialmente son (1) ;Cudl estimador 8 deberia ser utilizado?, y (2) ¢ Qué
tan preciso es como estimador de 67
Antes de comenzar a describir como trabaja el bootstrap, vamos a describir
una situacién donde éste no es necesario. Supdngase que nuestros datos
consisten de una muestra aleatoria de tamafio 7, Xl s .oresX pde una funcion
de distribucion ¥ (desconocida) y queremos estimar un funcional, tal como
la media poblacional, p, p= deF(x) consideremos entonces utilizar el
nusmo funcional, pero de la funcion de distribucion muesiral, 7, el cual
en su lugar es la media muestral, esto es, 3_(‘_' = fxdF n{x), y queremos
conocer la precisién de la media muestral, X, como estimador de [, la

i4



media poblacional. ‘Si el segundo momento de F con respecto 4 |4 es

P =k F(Xz) p, 'y » entonces el error esténdar, 6’(1'—’ n, Xw es deoir,

la desviacion estindar X para una man. de la distnbueién F  es

(Y = | S4B error estandar es la medida de precision tradicional
L
para la media muestral. Desaforiunadamente no podemos utilizar (#) ya

qUE 1O CONOCeMOs },L’-;(F) pero, s1 podemos utilizar el estimador del error

w,

estindar, se = l n _l , donde & Do es Ia desviacion estandar muestral. Exste

una forma mas obvm para estimar G(&).

Sea My la funcion de distnbucion muestral, entonces el estimador del error
estandar de la media muestral 6(-) nos queda de la forma siguiente

m, n)

G(Fp)= y . Este procedimiento se denomina el Principio

Plyug-in, el cual es un método simple de estimacién de parametros a partir
de una muestra aleatoria. El estimador plug-in de un parametro 6 = #(5)
estd, defimdo por 6= HFy). Es decir vamos a estimar la funcién
Q = t(F) de la funcion de distribucién F, por la misma funcién, pero de la
funcion de distribucion empirica Fy, 6= HFy). El método bootstrap es
en si mismo una aplicacién de este principio.

Este argumento no siempre es practicable - una funcion de densidad de
probabihdad es solo uno de los ejemplos de un funcional de F que no c¢s
directamente manejable con este tratamiento. Sin embargo, £fon en 1979,
mirodujo el Mélodo Bootstrap, el cual consiste en rermuesirear las
observaciones muestrales previamente seleccionadas de wuna manera
particular con el objetivo de estimar pardmetros poblacionales.

La esencia de éste método es la simulacion de propiedades de un

procedumsento estadistico con un mimmo de suposicionss. La palabra

ot
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simulacion se utiliza en un amphio sentido: desde una simple sustitucién de
una distribucion estimada en una formula, hasta simulacion de Monte Carlo

de muestras aleatorias y sus respectivos analisis.

, .
MUNDD REAL MUNDO BQOTRTRAP
Modslo de Maddo de
Protoriaildad Frobakalid ad
{Drssunod do 3P Emtmmdeoip
5 «
Dates Obsare?
. fz;h:“’“";l‘} MG BT
A= U, A= Kt o= (BF 1 K32 W)
Etolfntion do Flepb certin
heads Footdrap

A 3

& =5% 6 =s®

FIGURA 1111 Diagrama esquemitico del bootstrap aplicado a
problemas con wia estrustura general de dates, P-->X La
atapa cracial - produce un sstimador p da la funcién
de Probabilidad P, de los datos observades X, La imagan de
la derecha es determinaca por ef raundo real: "X as
sirnilar a "P--» 3 la funcidén de 3% 0 8(3* ) es la
misms funcién da X--=Q, S{X).

Tomado de Efron & Tibshirani, " An Intreduction to the
Bootstrap”, pag, 87

El método bootstrap es una técnica de reciente desarvollo para hacer ciertos
tipos de mferencias estadisticas, la cual requiere de la capacidad v velocidad
de los modemnos computadores, para poder smmphficar los complicados
calculos que con frecuencia aparecen en la Teoria Estadistica tradicional.

El objetivo particular de la teoria bootstrap es wna implementacion muy
particular de los conceptos estadisticos en base a computacion intensiva, los

cuales son mas sencillos de comprender desde un contexto computacional
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que a través de la exposicion matemética usual. En cierto modo, el nombre
Bootstrap transmite la impresion a los estadisticos de  sacar algo de &
nada, los cuales idealmente remuestrean de sus muestras, que
presumiblemente tendrian tanto éxito como si ellos trataran de levantarse
por los cordenes de sus zapatos, sin embargo, el bootstrap es una técnica
de base tedrica promisoria.

Ahora vamos a introducrr alguna notacidon, una muestra
X = (X1,....Xn) es una coleccion de n nimeros (no necesariamente
escalares), sin considerar el orden, seleccionadas aleatoriamente de la

poblacién con funcién de distribucién F. Por aleatoria entendemos que los

X’;s son variables aleatorias independientes e idénticamente distribuidas
cada una con funcién de distribucion F.

in los  denomunados problemas no paramétricos una muesira

x* = (XT, ....,x’:;) es una coleccion no ordenada de items
seleccionados aleatoriamente de X, de modo que cada X j tiene igual
probabilidad de ser igual a cualquiera de los X} .S,

PO =X;/X)= nl1<ij<n
g decir, los X ;’s son variables independientes ¢ idénticamente
distribuidas, condicionadas por X, con esta distribucion. Por supuesto, esto

significa que X *es probable que contenga valores repetidos, los cuales
todos seran listados en la coleccién X . En problemas paramétricos xX*

denota una muestra seleccionada aleatoriamente de una poblacion
dependiente de un parametro cuyos valores han sido estimados. Si la

poblacidn es continua entonces con probabilidad uno, todos los valores en

s : .
X" son diferentes. En ambos casos problemas paramétricos y no

17



paramétricos, F'p denota la funcion de distribucidn de la "poblacion” de ia
3 .
cual X fue seleccionada.

Un estimador © es una funcién de los datos, y puede también considerarse
como un funcional de la funcién de distribucién empirica, 5, aunque

son funciones numéricamente equivalentes, es 1til distinguir entre ellas,
para ello utilizaremos corchetes para la primeras y paréniesis para la

segunda, 6= O[X] = 6(Fn) . Por ejemplo, si O = O(F) = [xdF(x), es la
media poblacional y Fyes la funcion de distribucion empirica (la cual
asigna una ponderacidn de w1 acada punto Xz')’ enfonces,

6 =00x)= 5 E1L, X,
= O(Fy) = deFn(x)

la media muestral.

3.1.2.- Método Bootstrap

Sea X/ = (X 1> ....,Xn) una muestra aleatoria proveniente de una

distribucion desconocida #, sea ‘cf = (xl . o ) la muestra aleatona

observada. Sea O(F) algin parimetro poblacional de interés, tal como la
media de F, y sea #(X) un estimador de O(F) tal como la media muestral.

Sea,

H(F, X) = t(X) - 6(F) (3.1)
Supongamos que estamos interesados en estimar a partir de los datos
observados x, la distribucién muestral de #, o algin otro parametro de
interés como la media de H - el sesgo de #X) -, la vananza de / - la

varianza de #(X), para ello aplicaremos el siguiente algoritmo.
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3.1.2.1.- Algoritmo del Método Bootstrap
(1) Constrmimos la funcién de distribucién empirica de los datos,
Fn:masa de probabilidad nl parax;i=1,..,n(3.2)

(i) Con Fpfija seleccionamos una muestra aleatoria de tamafio n de

1Fn,
Xf =x:3“, Xj ~IND Fp,i=1,2,..,1n(3.3)

Esta muestra es la denominada muestra bootstrap.
(1i) Aproximar la distribucién muestral de H(X F) por la distribucion
bootsirap de
H*X™,Fy) (3.4)
es decir, la distribucién de H * inducida por ¢l mecanismo aleatorio (3.3)
con Fy fija.
La dificultad del método bootstrap esta en el calculo de la distnbucion

bootstrap, la cual es en la mayoria de los casos imposible de calcular, sin
embargo existen tres métodos que hacen posible este calculo:

(1) El célculo directo;

(2) Aproximacion de la Distnbucion Bootstrap por el método de Monte

Carlo: repetidas realizaciones de X * generadas a partir de la muestra
observada de tamafio # provenientes de /'y digamos X T , .n..,‘X'g; y el

histograma de los correspondientes valores (X’;) yeerns H(XE) se toma
como una aproximacién de la distribucién bootstrap de H(X‘%, Fp),lacual
mejora a medida que el numero de muestras se incrementa.

Este enfoque funciona, porque en la mayoria de las aplicaciones, la cantidad
bootstrap puede expresarse como una esperanza condicional sobre la

muestra o equivalentemente como una integral con respecto a la funcion de
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distribucién empirica. Nuestro desarrolio de los Principios del Bootstrap, se
enfoca mayormente sobre esta propiedad.

(3) Utilizar Series de Taylor para aproximar la media y la varianza de la
distribuciéon bootstrap de /1 *

3.1.3.- Errores Estandares y Estimadores de Errores Estandares

3.1.3.1.- Introduccion

Los estadisticos tales como € =#Fy) con frecuencia son los

primeros resultados de un analisis de datos, lo siguiente que se tiene que
hacer es conocer la precisién de éste, el bootstrap provee estimadores
precisos para estimar el error estandar del estadistico de interés mediante ¢l
principio plug-in. Supdngase que se liene una muestra aleatoria
X == (Xl N, ¢ n) de una distribucién de probabilidad # (desconocida) la

cual ha sido observada y queremos estimar un parametro de interés

6 = t(F) con base en X. Para este propésito, calculamos el valor de un
estadistico O = S(X) de X. ;Qué tan preciso es 62

3.1.3.2.- Kl Estimador Bootstrap del Error Estandar

Sea Fy; la funcién de distribucion empirica, asignando probabilidad
n~1 sobre cada valor X 2 1=1,...,n, observado. Una muestra bootstrap es

una muesira aleatoria de tamafio n seleccionada de Fjp, digamos
ok N .
X = (_Xik, .5 X 77 ), €5 deir,

e o N
..._5_}(}3 ~ INDF (3.5)

X1 .
.. . ) RO
Existe otra forma de decirlo: las observaciones ,XJ. , J=1,...,n son una

muestra aleatoria seleccionada con reposicion de una poblacion con #
objetos (Xl . °..,.X;;a) .
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T el e g f*_)’ /‘%‘__r )’*_
De esta forma, podriamos tener Al m)x»;,)lz =X9,..,.Xp=X, 1 El

conjunto de datos X consiste de miembros del conjunto original

(Xﬂ V. ¢ n) , algunos apareciendo cero veces, algunos apareciendo una

vez, algunos apareciendo dos veces, etc.
Dado un conjunto de datos X, 8™ = SX™) se denomina una
replicacion bootstrap de ©. Es decir, la cantidad SX *) es el resultado de

aplicar la misma funcién S(-)a X™ tal como fue aplicada a X, Por
ejemplo, si S(X) es la media muestral, entonces S(X*) es la media muestral

de los datos bootstrap.

El estimador bootstrap de se F'(é) , €l error estandar de é, es un
estimador plug-in que utiliza la funcion de distribucion empinca (F.D.E.) en
lugar de la F.D. F. Especificamente, el estimador bootstrap de se F(é) €s
sep (é *) , &s decir, el error estandar de é*para conjuntos de datos de

tamafio n seleccionados aleatoriamente de 'y, también denominado
Estimador Bootstrap ideal del error cstandar de ©.
El algoritmo bootstrap, proximo a describir es una forma computacional de

obtener una buena aproximacion del valor numeérico de se F, (é*) , Y es
tacil de implementar en el computador.

Algoritmo del Método Bootstrap para estimar Errores Estandares

1.- Seleccionar B muestras independientes bootstrap X';, cerena ;, cada una
consistente de n valores seleccionados aletoriamente con reposicion de X,
para estimar un error estandar, el numero B generalmente estara enire 25 y
200,

2.- Evaluar la replicacion é*(b) = S(X;) , b=1,..,B,en cada una de

las muestras bootstrap.



) , 7 a o
3. Bstimar el error estindar se g{ 0 ], por Ia desviacién estandar de Ia 4
replicaciones G
'WB A x7 *
Sy 07000
SCB = B__,l IS
donde
B oA
i, Hp=p 97(B)
0 ()=—"——.

B

El algoritmo bootstrap trabaja seleccionando un mimero finito de muestras
bootstrap, evaluando las correspondientes replicaciones y estimando el

error esiéndar de ©, por la desviacién estandar de las replicaciones. El
resultado se denomina el error estandar denotado por se g, donde B es ¢l

mimero de muestras bootstrap utilizadas. El estimador bootstrap ideal
se F(é*) y su aproximacién sep algunas veces se  denominan
estimadores bootstrap no paramétricos porque estin basados en £, el
estimador no paramétrico de .
3.1.3.3.- El Numero de Replicaciones Bootstrap B

Qué tan grande deberia ser B, el nimero de replicaciones bootstrap
uithizadas para cvaluar se g? La cantidad de tiempo que toma evaluar las
replicaciones bootstrap se incrementa linealmente con 8. Las restricciones
de tiempo pueden sugerir un valor pequefio de 5 si la funcién S(X) es muny
complicada. Existen dos reglas, obtenidas a partir de la experiencia:
(1) Un nmimero de replicaciones pequeno, digamos 8 = 25, usualmente es
mformativo; B = 50 con frecuencia es suficiente para dar un buen estimador

del error estandar.
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(11) Muy raras veces son necesarias mas de B = 200 replicaciones para
estimar un error estandar (valores mas grandes de B son necesarios para
Intervalos Confidenciales Bootstrap).

La gran ventaja del bootstrap es que pueden calcularse tantas replicaciones
6™ como se desee,0 al menos tantas replicaciones como se permitan. Esto
nos permite efectuar calculos probabilisticos directamente, por ejemplo,
utilizando la variabilidad observada de los 6%s para estimar la cantidad no
observable se F(G) .

El Método Bootstrap tiene en cierto modo ventajas diferentes sobre los
metodos encontrados en los textos tradicionales: (1) Cuando se utiliza de
modo no paramétrico, éste releva al analista de tener que hacer supuestos
parameétricos acerca de la forma de la poblacion fundamental; (i) Cuando se
utthza de modo paramétrico, provee respuestas mas precisas que las
formulas encontradas en los textos y respuestas en problemas para los

cuales no existen férmulas.
3.1.3.4.- Estructuras de Datos mas Complicadas

El algoritmo bootstrap estudiado anteriormente esta basado en el
modelo probabilistico mas sencillo: el modelo univariante, donde sdlo una

distribucion de probabilidad, F (desconocida) produce los datos X por
muestreo aleatorio, es decir, X 15 ,Xpn ~INDF. Los datos sz pueden

ser mas complicados siendo quizas escalares o vectores o funciones pero la
funcion de probabilidad es simple. En Estadistica, algunos andhsis de datos
mvolucran estructuras de datos mas complicadas tales como senes de

tiempo, andlisis de varianza, modelos de regresion, etc.

[
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El algoritmo bootstrap puede adaptarse para estas estructuras de datos y
otras més generales. La mayor parte de la literatura del método bootstrap
concentra mayormente su atencidén en observaciones independientes. Sin
embargo, estructuras de datos, tales como series de tiempo, procesos de
markov, involucran observaciones no independientes. ; Puede aplicarse el
método bootstrap sobre observaciones no independientes?, por ejemplo,
supdngase que se tiene el proceso autoregresivo de primer orden,
Xp=PBXpq +&p &~ NID(O, 6’2) ,¥ X = 0. 5i seleccionamos una
muestra aletoria con reposicién {X? t=1,...,N } de los Xs, se
perderia esta relacion de no independencia existente entre X, j y Ay,
debido al mecanismo de seleccidn. Existen formas alternas que tratan de
conservar esta relacién de dependencia entre los X’ZS al constrair la muestra
bootstrap.

Alternativa 1 Sea X, = BXg 1 +&¢ calcular los errores estimados
E‘ =Xy~ ﬁXt 1 donde ﬁ se obtiene a partir de los X’ts originales,

calcular % % g =1 é ¢, los errores centrados. Sea Zn la funcion
de distribucion empirica de los 2.'3 45 Pretendiendo que F n es la verdadera

distribucidn seleccionamos una muestra aleatoria
E,I =1, .,_N} de Fy. De este modo las wvariables aleatorias
\‘c",t =1, N } son independientes e idénticamente distribuidas con
funcién de distribucién <. Ahora construimos la muestra bootstrap
\‘](t ,i=1,. N} recursivamente por X; = BX;:l + é?, r=1..Ny
XO = 0.
Alternativa 2 Esta es una alternativa diferente de aplicar el método
bootstrap en series de tiempo. En lugar de remuestrear los residuos, se

obiienen “blogques” de observaciones consecutivas, por ejemplo, si la serie
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es Aq,A0, .. Xg ¥ seleccionamos bloques de longitud 3, entonces

tendriamos los bloques:

(7.0, ), (000,53, ), (3,204,5 ), (X, 5,5 ).
entonces muestreamos los bloques con reposicion, y luego se "pegan” para
formar la serie de tiempo bootstrap. Se seleccionan tantos bloques como sea
necesario para obtener una serie de aproximadamente la misma longitud
que la serie original. Si la longitud del bloque es /, entonces seleccionarmos
k bloques de modo tal que n~k-I. La justificacion para este
procedimiento es simple, ya que no podemos remuestrear las observaciones

individuales, porque destruiriamos la relacion de no independecia que
estamos tratando de capturar. Con el procedimiento antes mencionado, la
idea es seleccionar un bloque de longitud 7 suficientemente grande de modo
que las observaciones que se encuentran fuera del bloque sean
mdependientes, mientras que las observaciones integramtes del blogue
retienen la relacion de no independencia. El mayor inconveniente de este
procedimiento es que la serie de tiempo original debe tener una longitud

considerable.

Alternativa 3 Supongase que se tienen las observaciones X pl= 1,..,mn,
en donde la relacion de no independencia entre X, | y Xy puede ser lineal
o no lineal. Ademés (Xt—-l =Xt) ~ XH X, (xtml ,xl_«), la cual es
desconocida, y queremos realizar inferencias acerca de algan estadistico de
nuestro interés que relaciona las variables aleatorias X,y y X. Entonces
un mecanismo de remuestreo que trata la relacion de no independencia de

las observaciones X}S es el signiente: Construir los pares consecutivos

()fl . ¢ 2), reey (‘Xn—l"yn) , en total n-1 pares. Tomando estos pares
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como una muesira aleatoria de [ X (+,-), construir la funciéon de
Al A

distribucién empirica, Iy, de estas observacions (pares) y seleccionar una

. ce o R . |

muestra aleatoria, con reposicion, i(Xl i’X 2}) hy=1,.,n~1 [

Luego atilizar la serie X' Ti oX z}. como muestra bootstrap umvarianie.

3.1.4.- Estimadores del Sesgo

El sesgo de 6= S(X) como un estimador de © esta definido como la
diferencia entre el valor esperado de 6 y el valor del paramétro ©,

Sesgo = Sesgo F( 6, e) = E[S0]- 4F) (3.6)
Un valor grande del sesgo es un aspecto indeseable en el desarrollo de los
estimadores. Los estimadores insesgados aquellos para los cuales
& F]_GJ =0, tienen un rol importante en la teoria estadistica v en la
practica. Estos producen un sentimiento de objetividad cientifica en los
procesos de estimacion. Podemos utilizar el bootstrap para asignar el sesgo
de cualquier estimador, el estimador bootstrap del sesgo esta definido como
sesgo g , sustimyendo 'y por F, en (3.6),
" o \ # ¢ K )
besgan = EFH [SX = HFn) 3.7)
donde Ep [S(ZX* )] puwede aproximarse por el promedio de las
o T aw
replicaciones éi ,i=1,..,B, estoes,
Lul A “1B ot
’ B B

El estimador bootstrap del sesgo basado en B replicaciones bootstrap,

(3.8)

sesgo g con 4] l!‘(u) sustituido por K F [S’(X* )} es
sesgop =0%()~t(Fn)(3.9)
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3.1.5.- Propiedades Asintéticas del Método Bootstrap
Sea X = (X_ . ¢ n) una muestra aleatoria proveniente de umna

funcion de distribucion F (desconocida). Sea Tn = Ty (X 15 ....,Xn) un
estadistico y 7:D0 — R es un funcional (parametro), donde D cs una
clase de funciones que contiene (al menos) a F y a todas las distribuciones
discretas con soporte infinito.

Sea Huy(X,Fy= /u|Ty-T(F)], v supongamos que la distribucion
asintética de Hp(X, IF) es normal con media cero.

Dada 1a muestra observada x = (xl . ...,xn) , sea My la funcidn de

distribucion empirica de los datos v con ella obtenemos la muesira
A e
bootstrap X* = kX*, ....,A’;:,) )

Sean H™ = H;;(X*,Fn) = fﬁ'[T; - T(Fn)] y f;‘; la distribucién de
H™, entonces f z converge, en probabilidad a una distribucién normal
gstandar, s1 T es una clase particular de funcionales, es decir, f z(x, Fy)

converge en probabilidad a la misma distnbucion.

Caso Particular: La Media Muestral

Sean Xl ,....Xn variables aleatorias independientes ¢ idénticamente
distribuidas con funcién de distribucion F, sean también [l y 6, la media
v la varianza (finitas) de la funcién de distribucion F.

El estimador tradicional de L es X, la media nmuestral, y su error estandar

-

S . .
es —2 donde Sy es la desviacion estandar muestral. De acuerdo con el
H

Jn
Teorema Central del Limite, sabemos que la distribucion de

\f'r’7 (jzy_p')
On=——s—" > N(0,1)(3.10)

Para una explicacion més detallada ver Goitia, 1991, pl19-27
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converge débilmente a la distribucion normal esténdar, por tanto, se conoce
la distribucién asintotica de (.

Lo que ahora se plantea es si a la distribucién bootstrap podemos hallarle
un comportamiento asintotico similar al de Opn. En verdad, puede
demostrarse que la distribucion asintotica de

. Jm(xXx)
Om= T ~> M0,1)(3.11)

—— * " 3 .
es normal estandar, donde X' y S f;/z se basan en replicaciones bootstrap.

3.1.6.- Intervalos Confidenciales Bootstrap

Los intervalos confidenciales exactos de un parametro real 0, de una
familia multiparamétrica, en muchos casos no se conocen, solo se conocen
aproximaciores.

Supdngase que se tiene una muestra aleatoria de tamano #,
X== (X 15 ‘\,..,Xn) de una distribucién desconocida F. Sea 6 = HEp), e

estimador plug-in del parametro de nuestro interés y sea se alguna
estimacion razonable del error estiandar de © basado quizas en célculos
Jackknife o bootstrap. En la mayoria de los casos, la distribucion de 6 se
aproxima a una distribucion normal con media © v desviacién estandar se
cuando # —> o, es decir, O~ N(O, se o equivalentemente,

(é e\
Z=" L ANO,1)(3.12

El resultado anterior es asintético o para muestras grandes, y es verdadero
para modelosde probabilidad generales.

Sea Z(OL) el ci—ésimo percentil de la distribucion nornwl e:standar es dectr,

s1 tomamos a (3.12) como verdadero, se tiene q‘ué.;k
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(Bme) < 71 "0y =120 (3.13)

PR s~
el cual puede escribirse como:
P},{é _Z01-0g <0< 6 —Z(Oc)se} =1-2u

En general, ‘
[G - Z(1 “a)se, 6- Z(a)sei} (3.14)
se denonuna [ntervalo Confidencial Esténdar con probabilidad 1-2a, o
mivel de confianza 700(71-2a)%, o mas simplemente intervalo confidencial
1-200 para ©. Ya que Z(a) = wZ(I_O(’) ., (3.14) puede escnbirse como,
G 710,
3.1.6.1.- El Intervalo #-bootstrap

Los intervalos de confianza aproximados basados en calculos

bootstrap fueron mtroducidos por Efon (1981). Igual que los intervalos
estandares, estos pueden ser aplicados antomaticamente en casi todas las
situaciones.
A través del uso del bootstrap podemos obtener intervalos muy precisos sin
tener que hacer supuestos de normalidad como en el caso anterior. El
enfoque bootstrap estima directamente la distribucion del pivote (3.12), de
los datos, es decir, construye la funcion de distribucion empirica de los
datos que se tienen a la mano. Este genera B muestras bootstrap y se calcula
la version de (3.12) en cada una de ellas. Mas formalmente, el método
t-bootstrap consiste en:

(1) Generar B muestras bootstrap: X ’;, ....,X;
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6-0
(i) Calcular Z *b) = Lwlm donde 6 *( b)= S(X*b ) es el valor de
se (9(5))

é para la muestra bootstrap X *b

yse*(b) es el estimador del error

estandar de é*para la muestra bootstrap X *b. El a-ésimo percentil de

#Z" (D) 1)
B

Z"(b) es estimado por ¢l valor (0 g que === (. Por

ejemplo, si B = 1000, el estimador del punto 5% es el S0V valor més
grande de Z ™ (b). Finalmente, el intervalo -dootstrap esta dado por
{ 61 “a)se, 6 - t(oose] (3.15)

S1 B- o no es un entero, el procedimiento siguiente puede ser utilizado.
Asumiendo que oL £ 0.5, sea k= [(B+ 1)a] el mas grande entero menor
o igual que (B+ 1)at. Entonces definimos los cuantiles empiricos o0 y 1-a
por el k-ésimo valor mayor y por el (B+1-k)-ésimo valor mayor de Z *(b),

respectivamente.

La cantidad (3.12) se denomina una aproximacion pivotal, esto significa que
su distribucién es aproximadamente la misma para cada valor de ©. Puede

demostrarse que para muestras grandes la cobertura del mtervelo
tboolstrap tiende a ser més cercana que la cobertura del infervalo
confidencial estandar. El intervalo #-bootstrap es particularmente aplicable a
estadisticos de localizacion tales como la media muestral, percentiles
muestrales, media timmed. Pero no puede aplicarse a estadisticos generales

como el coeficienie de correlacion.

3.1.6.2.- El Intervalo Percentil

Los percentiles del histograma bootstrap pueden utilizarse para definir
los limites confidenciales. Supdngase que nos encontramos en la situacion

general de la fig. III.1. Un conjunto de B datos bootstrap es generado
X ?k, ..... ,X;;_, y las replicaciones bootstrap é; = S(X’Z) son calculadas.
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Sea G la funcion de distnibucién empirica de 6™ . Bl Intervals Percentil
I-2ev esta definido por los perceniiles o v 1-a de G, esto es,

[ 6*() § ”‘(1“00] = [G“l (), G (1 - oc)] (3.16)
La cxprcéién (3.16) se refiere a la situacion bootstrap idéal, en la cual el
nimero de replicaciones es infinito. En la practica tenemos que utilizar un
numero finito de replicaciones bootstrap, entonces el intervalo percentil
I-2a aproximado es,

B
£ | xR 1-—-
donde @ B(Oﬁ') y O B( @) son los percentiles bootstrap o« v l-w,

respectivamente, de la distribucion de ég Asi, s1 B = 2000, y o = 0.05,
él;; es el 100" valor ordenado de las replicaciones 6 (si B- o no es
un entero puede utilizarse la convencion del intervalo -bootstrap). $i la

. . . A He . .
distribucién de 8 es mas o menos normal, entonces el intervalo normal

estandar v el intervalo percentil seran mas o menos similares.
3.1.6.3.- El Método Bias-Corrected and Accelerated (BCu}

Uno de los principales objetivos de la teoria bootstrap es producir
"buenos"” mtervalos confidenciales. "Bueno” en este contexto significa que
los intervalos bootstrap deberan ser cercanos a los intervalos confidenciales
exactos en aquellas situaciones donde la teoria estadistica suminisira una
respuesta exacta v deberia dar coberturas de probabilidad precisas (exactas).
Ninguno de los métodos estudiados cumplen con este criterio: los intervalos
t-bootstrap tienen buenas coberturas de probabilidad, pero tienden a ser
erraticos en la practica. Los intervalos percentiles son menos erréticos, pero

tienen coberturas de probabilidad satisfactonas.



Sea O (o) el o-ésimo percentil de B replicaciones bootstrap: é] yees g B

El intervalo percentil /-2« esta dado por (Qﬁk(d), 6a —O(’)) , los limites
del intervalo estan también dados por los percentiles de la distribucion
bootstrap pero no en la misma forma de (3.16). Los percentiles utilizados
dependen de dos mimeros ay 20, denominados la aceleracion y la
correccion del sesgo, respectivamente. El intervalo BCa de cobertura /-2 ¢,
esta dado por,
BCa: (fé*(%),é*(%)) (3.18)

donde,

i 429 |

———|(3.19
FTraeze |

fTt/\
oy = ‘DLZO

R 7,0 7 0-0
= @| 7 + —2 3.20
2 [ZO ! 1+a§(i0+Z“‘“’)} (3.20)

Aqui, @(.) representa la funcién de distribucion normal estandar,
Z(‘O(') y Z(I“O‘) son los percentiles o y 1-a, respectivamente, de una
distribucion normal estindar.  Notese que si 2y Z(entonces

oy = (I)(Z(Of‘)) =0y oy = CD(Z(IBOL)) =1—0o, de modo que el
mtervalo BCa se reduce al intervalo percentil.

i, Como se calculan a y 24 ?

El valor bias-correction éo se obtiene directamente de la proporcion de
replicaciones 6* que son menores que el estimador original 6, esto e,

J( #(Qé)

2o =@ l =1 (3.21)
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O indica la funcidon mversa de una funcién de distribuciéon normal
estandar.

s a 0] 40 *

z mude aproximadamente el sesgo de la mediana de 0, que es la

e . . A% A
diferencia entre la medianade 6~ y O.
Existen varias formas para calcular la aceleracion a. La explicacidn més

facil es dada en términos jackknife de un estadistico 6 = S(X). Sea X(ﬂ la
muestra original con el i-ésimo punto X'; borrado, sea é(z) =5 X( z)) y
se define
D W <
Una expresion simple para la aceleracion es
n 3
oz (6060)
a= 7 (3.23)
n A 2
6{% (éo“’”em) 32
La cantidad a se denomina aceleracion porque se refiere a la razom de

cambio del error estandar de © con respecto al verdadero valor de ©.
Valores no nulos de a y io, cambian los percentiles utilizados para los

limites BCa. Estos cambios corrigen ciertas deficiencias de los métodos
t-bootstrap, estandar y percentil.

El intervalo BCa tiene la interesante propiedad de "transformacion”, es
decir, los limites BCa se transforman correctamente s1 cambiamos el

parametro de interés de © a alguna funcién de ©. Por ejemplo, ¢l intervalo

confidencial BCa para (JV(4) = JO, se obtiene tomando las raices
cuadradas a los limites del intervalo BCa para O La principal desventaja del

intervalo BCa s el mimero de replicaciones requeridas, al menos 8 = 1000
replicaciones son necesarias para reducir el error muestral de la simulacion

de Monte Carlo.
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3.2.- METODO KERNEL
3.2.1.- Introduccion

({zenmman, 1991) El campo de la estadistica no paramétrica se ha
enriquecido en afios rectentes con el desarrollo de nuevas herrarmenias para
el anabisis estadistico. Estas nuevas herranuientas ofrecen alternativas a los
tradicionales modelos paramétricos para explorar datos umivariantes y
multivananies en grandes proporciones, sin necesidad de hacer grandes
supuestos estructurales acerca de la distribucidn de los datos. Una de estas

herramientas  es  la ESTIMACION NO PARAMETRICA DE

DENSIDADES, la cual es un interesante topico de investigacion.

(Silverman, 1986) ;Qué es la estimacién de una funcidn de densidad de
probabilidad (f.d.p.) 7. La f.d.p. es un concepto fundamental en Estadistica.
Considérese cualquier variable aleatoria X que tiene fdp. continua |

donde

flx) =0, E‘fﬁ FGOdx (3.24)

St se eepecifica la forma funcional de f tenemos entonces una descripoidn

de la distribucion de X la cual nos permutird, por gjemplo, obtener

probabilidades asociadas con X através de la relacion
Pla<X<b)=| i F()dx (3.25)

Supdngase ahora que no conocemos fa fdp vy lo que se tiene s un

conjunto de observaciones (muestra aleatona) Xy, ... Xnde esta f.dp. El
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objetivo es estimar la f.d.p. desconocida , para lo cual se tienen dos

enfoques:

(1) El Enfoque Paramétrico: este asume que los datos son seleccionados de
una familia paramétrica de distribuciones, por ejemplo, la distribucidn

normal de parametros Uy 2. Entonces la estimacién de la densidad
puede completarse, estimando los parametros [l y 62 a pattir de los datos
observados, y sustituyendo luego estos valores en la f.d.p. normal.

(1) El Enfogque No paramétrico: este es menos rigido en relacion a los

supuestos que se hacen acerca de la distribucion de los datos observados, se
asume que la distribucion tiene f.d.p. f con al menos dos denvadas
acotadas, y en este caso los datos observados nos pueden ayudar en la
estimacion de f en un mayor grado que en el caso de si fuese restringida a
una familia paramétrica dada. En otras palabras, f, se supone que pertenece
a una familia de densidades suficientemente grande, de modo tal que no
puede representarse a través de un nmimero finito de parametros. i

{Tzernenan, 1991) Quizas el estimador no paramétrico mas antiguo de una
f.d.p. umivariante fue el histograma. Progresos adicionales imcialmente -
con los métodos kernel, series ortogonales, y el vecino mds cercano -
fueron inspirados por aplicacion a la discriminacion no paramétrica y
desarrollos en estimacion de densidad para series de tiempo estaciona-nias.
Luego se desarrollaron métodos tales como verosimilitud penalizada, spline
polindmicos, kernel variable, sierves, y projection pursuit. ; Por que la
estimacion no paramétrica (y métodos relacionados) son populares hoy en
dia?. Se tiene una combinacion de circunstancias: el crecimiento de la

importancia de los computadores en la investigacion estadistica, la



disponibilidad de software estadistico de calidad y la ventajas de los
graficos de alia resolucion.

Los investigadores han encontrado que la estimaciéon no paramétrica de
densidades es efectiva en la situaciones siguientes:

(a) En andlisis exploratorio, caracteristicas descriptivas de la densidad
estimada, tales como multimodalidad, comportamiento en las colas y
asimetria son de especial interés; y el enfoque no paramétrico puede ser mas
flexible que los métodos tradicionales;

{b) En anlisis confirmatorio, los estimadores de densidad no paramétricos
se utthzan en la foma de decisiones, tales como andalisis discrinunanie no
parameétrico y anabsis de clasificacidon, pruebas para medianas, y pruebas
para varianzas aleatonas; y

(c) para propositos de presentacion, los detalles estadisticos de los datos con
frecuencia pueden ser rapidamente explicados a individuos a través de
simples graficos de la curva de densidad estimada.

El éxito del desarrollo de la técmicas de estimacion no paramétrica de
densidad llevd, en su momento, a la formulacién de la regresion no
parameétrica, incluyendo el andlisis no paramétrico de curvas de crecimiento,
y patrones de reconocimiento estadistico no paramétricos.

3.2,2.- Estimadores de Densidad Confiables (Bona fide)

De los métodos disponibles para la estimacién de densidades, algunos
siemipre nos suministran estimadores conflables, nuentras que ofros
generalmente nos resultan en estimadores de densidad que contienen
ordenadas negativas (especialmente en las colas) o tienen una integral

infinita.



La negatividad puede ocurrir naturalmente, como resultade de que los datos
se encuentran ubicados en ciertas regiones, o esto puede ser causado por la
flexibilizacién de la restriccion de no negatividad de (3.24) con el objeto de
mejorar el porceniaje de convergencia de un estimador de £ Ademés, en la
mayoria de los casos los investigadores para apresurar la convergencia de
estimadores, seleccionan el flexibilizar la restriccion (3.24) en lugar de la
restriceidn de no negatividad.

Existen muchas otras formas de aliviar estos problemas: Ja densidad
estimada puede truncarse a su parte positiva, alternativamente podria
gstimarse una versidn transformada de , digamos logfof 3 v entonces
efectuar la transformacion necesaria para obtener un estimador no negativo
de f

3.2.3.- Propiedades Estadisticas de los Estimadores de Densidad

Como cualquier procedimiento estadistico, los  estimadores no
paramétricos de densidad son recomendados solamente si poseen
propiedades deseables. Las propiedades para muestras fimitas de los
estimadores no paramétricos de densidad estan disponibles para situaciones
especiales (Dehewvels 1977; Fryer 1976); pero en general, la investigacidn
se ha centrado en el desarrollo de propiedades para muestras gmnd@s,

?3@3&*&&&3&&@ Un estimador f de una fdp §F es mszesgado =
- KB 7 { f

..1

N ‘ _
=f(x). Aunque existen estimadores insesgados de

]
densidades paramétricas tales como la normal, poisson, exponencial, v
geométrica No existe un estimador confiable para todas las densidades

comtinuas gue sea msesgado.
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Por tanto, la atencidn se ha cnfocado sobre sucesiones { é’(x)} de
estimadores de densidades no paramétriuos que son asmidticamente
insesgados para f estoes, Vx € R, K, x)J ~» f(x) cuando # —
Consistencia: Una propiedad més i;mportmt.e es la consistencia, f es un
estimador (débilmente) consistente puntual para una f.d.p. f univanante si
g’(‘}c) — f(x) en probabilidad Vx € R, y es fuertemente consistente
puntual para si converge casi seguramente.

El enfoque L2‘ Si asumimos que j es cuadrado integrable, entonces el
desarrollo de i‘ en x € ‘R se mide por el Error Cuadratico Medio.

MSE() = E ¢ 109~ 1 (x)] =i ]+ Sesgo[f(x)]l (3.26)
donde,
Vi | =B, [t - B[ 10)] 2
Sesgo[f‘(x)] =F ' [f‘(x)] - f(x)
Si MSE(x) — Ocuando 7 —> 0 entonces s dice que f es un estimador
puntual consistente de en media cuadratica.

Un criterio mas importante relaciona las curvas f y £ Una de estas medidas

de ajuste se encuentra integrando (3.26) sobre todos los valores de x, esto
nos resulia en el error cuadratico medio integrado (MISE),
~ “y
F Xy —_ L B At
MISE = [, Ef[f(x) f(x)] dx (3.27)
Otra medida cominmente empleada es el Error cuadrado integrado o norma
Lo
A 2. .
ISE= [ [ 10~ £ (0) | " (3.28)
Tomando esperanza sobre en (3.28) nos resulta en el MISE. Con frecuencia
el /SE se prefiere como criterio en lugar de su valor esperado, MISE, ya que
¢l ISE determina qué tan proximo estaf' de fen un conjunto de datos,
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maentras que ¢l MISE esta referido con el promedio de todos los conjuntos
de datos posibles.

Bajo condiciones poco rigurosas, se ha demostrado que el /SE es una
razonable aproximacion aleatoria del MISE (Marron and Hardle, 1986),
sientras que en ciertas situaciones, el MISE puede ser un mejor criterio que
el ISE (Hall and Marron 1988), Farrell (1972) demostrd que para los

estimadores de densidad confiables la mejor proporcion de convergencia

4
asintotica de MISE es O(nm?) , ¥ Boyd and Steele (1978) demostraron que

O( nl ) , 81 fes una densidad normal.

El enfogue Ll' Un problema con el enfoque L2 para estimacién de
densidades no paramétrica es que el comportamiento en el extremo de una
densidad viene a ser menos importante, posiblemente resultando en

pecuhanidades en los extremos de la densidad estimada. Un enfoque
alternativo para la teoria no paramétrica de estimacion de densidades es L .
Especificamente Devroye and Dyorfi (1985) expresaron que Ly es " el
espacio natural para las densidades", y demostraron que el error absoluto
integrado  (también conocido como la variacién total o normal.q ),

LAE = [ |#0) = £ (0] dx (3.29)

esta siempre definido como una norma sobre ese espacio, es mvanante bajo
transformaciones mondtonas, v O<SI4AE <2 S I4AE -»0 e
probabilidad cuando 7 —> 0 | entonces se dice que T es un estimador
consistente de f; la consistencia fuerte de ¥ ocurre cuando converge casi

seguramente. Al tomar el wvalor esperado de (3.29) sobre todas las

densidades  nos resulta en el error medio absoluto integrado,

MIAE = Ef{ME].



Una cosa si es clara la labor técnica para obiener L resulta sustancialmente
s dificil que la necesaria para obtener su anélogo resultadoen .. //

3.2.4.- Estimadores Kernels

3.2.4.1.- Conceptos Informales de Estimacion Kernel

(Hand, 1982) Para introducir los conceptos fundamentales de una
manera intuitiva, comenzaremos ilustrando formas diferentes de bisqueda
de tales estimadores.
Sea una muesira Xl , - X 11, NUESTO ObjEtiVO €5 enconirar un estimador
ig'(x)_, de la f.d.p. condicional fen un punto x basado en Xl N €7/

(Silbverman, 1986) La forma mas sencilla es a través del

histograma. Dado un origen Xy y un intervalo df tamafio 4, se definen li)s
intervalos del histograma de la forma siguiente | xq + mih, xg(m + 1)k |
pare un entero m positivo o negativo. Por tanto el estimador de densidad
esta dado por

f’(x) = (nh)w'1 {# de X;en un intervalo dado} (3.30) #
(Hand, i982) El histograma presenta una serie de desventajas, entre las
cuales estan la naturaleza fija de los intervalos - la cual puede remediarse
mediante mtervalos de amplitud diferente - las discontimuidades en los
limites de los intervalos, v el hecho de que sea cero en cierto rango. La
primera dec estas propiedades significa que aquellos puntos algo
distamciados pero dentro del mismo intervalo tienen el mismo estimador de
densidad mientras que puntos cercano a otros pero en diferentes lados de
un limite de intervalo pueden tener muy diferentes estimadores.
En 1956 Mawray Rosenblott wvithzd ideas analogas a aquellas de los
promedios moviles en andlisis de series de tiempo para aliviar estos

problemas, en Iugar de tener una estructura de intervaloz fija,
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mdependientemente de la posicién de x, ¢l punto en el cual deseamos
estimar la densidad, el sugirid centrar el intervalo en x. En un histograma la
probabihidad de que un punto caiga en ¢l intervalo centrado en x es
estimada por la proporcion de puntos que caen en ese intervalo. La
densidad de probabilidad en x es en este caso la probabilidad total dividida
por el volumen del intervalo ( en nuestro caso el volumen es la longitud ya

que corrientemente consideraremos $60lo una variable). De este modo si el

mtervalo es de longitud 24:
oon_ —1en K(-x)
fx)=n Ez‘=1 Y (3.31)

donde, I‘&l (u) l[_k,h](x)
Entonces, es un estimador mas representativo de la muestra.
Otra forma de ver a (3.31) nos lleva a la idea de considerar (3.31) como un

promedio de » valores, uno por cada uno de la muestra. Los puntos

. . . . 1 .
cercanos a x (dentro de la distancia A) contribuyen un valor 57, mientras

=

que los puntos fuera de la distancia s entonces contribuyen con an valor

cero. Claramente el salto de L a 0 es el que Heva a discontinmdades, asi,

2h

podriamos sustituir por otra funcidén KQ(Jwaz-) la cual decrece

<,
2h
gradualmente con el incremento de lx-—xil. Nuestro estimador seria

entonces

. —1wH .
f(x)=n 121:1 Kz(x@mxi) (3.32)
donde Ko(u) decrece mondtonamente y sin saltos como |u] se
incrementa (mas generalmente, Ko (x) puede cambiar gradualmente y no

, . . / ,
es monotona decreciente). Ahora en regiones con muchos X8 habra mayor
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coniribucion, mienfras que en regiones con MUY pocas xis entonces habra
muy poca contribucion.
Note que si Ko tiene como rango la recta real, enfonces la tercera
desventaja del histograma - la ausencia de colas - es suprimida (aunque no
completamente, ya que eso dependera del KZ en particular seleccionado)
Retornando por el momento al kernel Rosenblatt de (3.31) este puede
reescribirse como
i‘(x) = (2nk)'"l {Fnx+h)—Fp(x—h} (3.33)
donde Fpu(x) es la funcidn de distribuciéon muestral,
fG) =limy_ o Cnh) 1 Px~h <X <x+h)

= limy_ R~ {Fy+ ) - Fye—h)} (3.34)

va que la f.d.p. es la denvada de la funcion de distribucion. Apareniemente

para n fijo un valor grande de 4 resulta en un estimador suavizado, mientras

que un valor pequefio de 4 resulta en un estimador altamente irregular. Si A
es suficientemente grande el comjunto X7, ..., Xpestard dentro del

mtervalo v resulta entonces un estimador uniforme. En el limite cuando

h — 0, £ correspondera a la derivada de la F.D. muestral, entonces f ser4
una serie de picos de probabilidad cada uno situado en un x ;. La forma

general de (3.32) puede reescribirse como
() = | K(x ~y)dF n(y) (3.35)
lo cual nos mdica que f es una convolucion suavizada de 1a F.D muesiral.

Aqui aparece otra desventaja asociada con el histograma y que no
mencionarmos anteriormente, esta ¢s el problema de seleccion del tamafio de
los itervalos. Desafortunadamente la adopcion del método kernel no
resuelve esta dificultad. Es evidente que el tamafio de los intervalos debe

seleccionarse de modo tal que estas irregularidades puedan modelarse. Esto
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también depende del tamafio de la muestra, ». Vamos a denominarlo
pardmetre de suavigacion - tamafio de ventana, amplitud de banda -
denotado por £, para variables continuas. Como es necesario especificar la

lependencia del estimador sobre 4, adopta:emos la forma general
£, =mn 12l h( ) (3.36)

En esta circunstancia, podemos utilizar solamente informacion local acerca
del valor de la densidad en algin punto dado x. Es decir, el valor de la
densidad en un punto x debe calcularse de los valores X’ 1° X 12 que caen
en una vecindad de x, y para asegurar la consistencia, la vecindad debe
contraerse cuando el tamafio de la muestra se incrementa. En el caso del
estimador kernel, el radio de efectividad de la vecindad es
aproximadamente igual al "tamafio de banda" o "parametro de suavizacion”
del estimador.
Como nota final debemos comentar que para nuestros propositos, el
método kernel elimina otra desventaja del histograma basico. Esta no
niencionada antes es el incremento exponencial en el nmimero de intervalos,
como el nimero de variables, se incrementa. Este problema se conoce como

" el curso de dimensionalidad”. El estimador kemnel es siempre un
promedio de »n contribuciones, no importando cudntas variables estan
mvolucradas. 7
(fzemman, 19¢1) Fue Cacoullos, 1966, ¢l primero en denominar a K en
(3.36) una funcion kernel, previamente a K se le denominaba funcién de
ponderacién. En el caso univanante, la transformada rapida de Fourier se
recomienda para efectos de calculo ya que se demuestra que f j, conserva
las propiedades inherentes al kernel K.
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